Last updated: 2024-06-14
Checks: 7 0
Knit directory:
SISG2024_Association_Mapping/
This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20230530)
was run prior to running
the code in the R Markdown file. Setting a seed ensures that any results
that rely on randomness, e.g. subsampling or permutations, are
reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 3e5aeec. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for
the analysis have been committed to Git prior to generating the results
(you can use wflow_publish
or
wflow_git_commit
). workflowr only checks the R Markdown
file, but you know if there are other scripts or data files that it
depends on. Below is the status of the Git repository when the results
were generated:
Ignored files:
Ignored: .DS_Store
Ignored: analysis/.DS_Store
Ignored: data/run_regenie.r
Ignored: data/sim_rels_geno.bed
Ignored: exe/
Ignored: gwas_plink.log
Ignored: gwas_regenie.log
Ignored: lectures/
Ignored: mk_website.R
Ignored: notes.txt
Ignored: step2_gwas_regenie.log
Ignored: tmp/
Untracked files:
Untracked: .Rhistory
Untracked: .notes.txt.swp
Untracked: analysis/SISGM15_prac4Solution.Rmd
Untracked: analysis/SISGM15_prac5Solution.Rmd
Untracked: analysis/SISGM15_prac6Solution.Rmd
Untracked: analysis/SISGM15_prac9Solution.Rmd
Untracked: analysis/Session02_practical_Key_cache/
Unstaged changes:
Modified: .gitignore
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were
made to the R Markdown
(analysis/Session08_practical_Key.Rmd
) and HTML
(docs/Session08_practical_Key.html
) files. If you’ve
configured a remote Git repository (see ?wflow_git_remote
),
click on the hyperlinks in the table below to view the files as they
were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
html | 977dc7f | Joelle Mbatchou | 2024-06-14 | Build site. |
Rmd | 8e1a0bb | Joelle Mbatchou | 2024-06-14 | update practical |
html | a2c3f7a | Joelle Mbatchou | 2024-06-05 | remove keys |
html | de4ef79 | Joelle Mbatchou | 2024-06-05 | add docs dir |
Before you begin:
library(data.table)
library(dplyr)
library(qqman)
library(ggplot2)
We will generate a simulated dataset consisting of 3 binary traits with different amounts of case-control imbalance, and a genetic data set of null SNPs to examine the distribution of the test statistics when scanning for associations.
We first need to define the path to the directory containing the PLINK 1.9 and PLINK2 binary.
plink_binary <- "/SISGM19/bin/plink1.9"
regenie_binary <- "/SISGM19/bin/regenie"
If you don’t have REGENIE installed on your machine, download the R
implementation here
and change the path of the variable regenie_script
to the
path of the script on your machine.
regenie_script <- "/SISGM19/data/run_regenie.r"
source(regenie_script)
We use PLINK1.9 to simulate the genetic dataset. For \(N=10,000\) samples, let’s simulate 10,000 variants where 5,000 are common with MAF chosen from a Uniform(0.05, 0.5) distribution and for the rare variants, we will use a Uniform(0.001, 0.01) distribution. Run the following command in R to get the simulated data:
N <- 10e3
# Generate a configuration file specifying allele frequencies (a,b) for Uniform(a,b) distribution
write(paste0("5000 common 0.05 0.5 1 1"), "sim.config")
write(paste0("5000 rare 0.001 0.01 1 1"), "sim.config", append = TRUE)
# Run PLINK1.9
cmd <- sprintf("%s --make-bed --simulate sim.config --simulate-ncases %d --simulate-ncontrols 0 --simulate-prevalence 0.1 --out cc_imb_geno", plink_binary, N)
system(cmd)
You should now have files cc_imb_geno.{bed,bim,fam}
.
For the phenotype data simulation, we will simulate 3 phenotypes with different levels of case-control imbalance (casse-control ratios [CCR] 1:9, 1:99, and 1:199). Run the following code
# get FID/IID from FAM file
sample.ids <- fread("cc_imb_geno.fam", header = FALSE)
N <- nrow(sample.ids)
## Set prevalence = 10% (CCR 1:9)
y1 <- rbinom(N, 1, prob = 0.1 )
## Set prevalence = 1% (CCR 1:99)
y2 <- rbinom(N, 1, prob = 0.01 )
## Set prevalence = 0.5% (CCR 1:199)
y3 <- rbinom(N, 1, prob = 0.005 )
# write to file
fwrite(
data.frame(FID = sample.ids$V1, IID = sample.ids$V2, Y1 = y1, Y2 = y2, Y3 = y3),
"cc_imb_pheno.txt",
sep = "\t", na = NA, quote = FALSE
)
You should now have a file named cc_imb_pheno.txt
.
We will now assess the null distribution of our test statistics when performing association testing using different models.
cmd <- sprintf('%s --bed cc_imb_geno --phenoFile cc_imb_pheno.txt --bt --step 2 --bsize 2000 --ignore-pred --out test_regenie', regenie_binary)
system(cmd)
This will produce three sumstats files (one for each phenotype) which you can read in R:
sumstats.y1 <- fread("test_regenie_Y1.regenie")
sumstats.y2 <- fread("test_regenie_Y2.regenie")
sumstats.y3 <- fread("test_regenie_Y3.regenie")
To run the R implementation instead, run the following for each trait (this computes the association tests and stores it in the R variable directly)
sumstats.y1 <- run_regenie_step2_bt(
bedfile = "cc_imb_geno",
phenofile = "cc_imb_pheno.txt",
phenocol = "Y1",
bsize = 300
)
sumstats.y2 <- run_regenie_step2_bt(
bedfile = "cc_imb_geno",
phenofile = "cc_imb_pheno.txt",
phenocol = "Y2",
bsize = 300
)
sumstats.y3 <- run_regenie_step2_bt(
bedfile = "cc_imb_geno",
phenofile = "cc_imb_pheno.txt",
phenocol = "Y3",
bsize = 300
)
qq(10^-sumstats.y1$LOG10P)
Version | Author | Date |
---|---|---|
977dc7f | Joelle Mbatchou | 2024-06-14 |
qq(10^-sumstats.y2$LOG10P)
Version | Author | Date |
---|---|---|
977dc7f | Joelle Mbatchou | 2024-06-14 |
qq(10^-sumstats.y3$LOG10P)
Version | Author | Date |
---|---|---|
977dc7f | Joelle Mbatchou | 2024-06-14 |
plot.sumstats.hist <- function(df, title = ""){
df$Z_STAT <- sign(df$BETA) * sqrt(df$CHISQ)
ggplot(df, aes(x = Z_STAT) ) +
geom_histogram(aes(y = after_stat(density)), colour="black", fill="white", bins = 100) +
stat_function(
fun = dnorm,
col = "red",
args = list(
mean = mean(df$Z_STAT, na.rm = TRUE),
sd = sd(df$Z_STAT, na.rm = TRUE)
)
) +
theme_bw(16) +
labs(title = title)
}
Now make histogram plot for each trait.
# for Y1
plot.sumstats.hist(sumstats.y1, title = "Y1")
Version | Author | Date |
---|---|---|
977dc7f | Joelle Mbatchou | 2024-06-14 |
# for Y2
plot.sumstats.hist(sumstats.y2, title = "Y2")
Version | Author | Date |
---|---|---|
977dc7f | Joelle Mbatchou | 2024-06-14 |
# for Y3
plot.sumstats.hist(sumstats.y3, title = "Y3")
Version | Author | Date |
---|---|---|
977dc7f | Joelle Mbatchou | 2024-06-14 |
What do you observe as the case-control imbalance gets more severe?
plot.sumstats.hist.by.group <- function(df, title = ""){
df$Z_STAT <- sign(df$BETA) * sqrt(df$CHISQ)
df$group <- ifelse(grepl("rare", df$ID), "Rare SNPs", "Common SNPs")
# Step 2: Generate normal density data for each group
moment.ests <- with(df, tapply(Z_STAT, group, function(x) c(mean=mean(x, na.rm = TRUE), sd=sd(x, na.rm = TRUE))))
z_stat_seq <- seq(min(df$Z_STAT, na.rm = TRUE), max(df$Z_STAT, na.rm = TRUE), length.out = 100)
normal_curve_data <- do.call(rbind, lapply(unique(df$group), function(grp) {
mean <- moment.ests[[grp]]['mean']; sd <- moment.ests[[grp]]['sd']
density <- dnorm(z_stat_seq, mean = mean, sd = sd)
data.frame(Z_STAT = z_stat_seq, density = density, group = grp)
}))
ggplot(df, aes(x = Z_STAT) ) +
geom_histogram(aes(y = ..density..), colour="black", fill="white", bins = 100) +
geom_line(data = normal_curve_data, aes(x = Z_STAT, y = density), col = "red", size = 1) +
facet_wrap(~group) +
theme_bw(16) +
labs(title = title)
}
# for Y1
plot.sumstats.hist.by.group(sumstats.y1, "Y1")
Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
ℹ Please use `linewidth` instead.
This warning is displayed once every 8 hours.
Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
generated.
Warning: The dot-dot notation (`..density..`) was deprecated in ggplot2 3.4.0.
ℹ Please use `after_stat(density)` instead.
This warning is displayed once every 8 hours.
Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
generated.
Version | Author | Date |
---|---|---|
977dc7f | Joelle Mbatchou | 2024-06-14 |
# for Y2
plot.sumstats.hist.by.group(sumstats.y2, "Y2")
Version | Author | Date |
---|---|---|
977dc7f | Joelle Mbatchou | 2024-06-14 |
# for Y3
plot.sumstats.hist.by.group(sumstats.y3, "Y3")
Version | Author | Date |
---|---|---|
977dc7f | Joelle Mbatchou | 2024-06-14 |
What do you observe as the case-control imbalance gets more severe?
cmd <- sprintf('%s --bed cc_imb_geno --phenoFile cc_imb_pheno.txt --bt --step 2 --bsize 2000 --firth --approx --ignore-pred --out test_regenie_wFirth', regenie_binary)
system(cmd)
This will produce three files (one for each phenotype) which you can read in R
sumstats.y1.firth <- fread("test_regenie_wFirth_Y1.regenie")
sumstats.y2.firth <- fread("test_regenie_wFirth_Y2.regenie")
sumstats.y3.firth <- fread("test_regenie_wFirth_Y3.regenie")
To run the R implementation instead, run the following (this computes the association tests and stores it in the R variable directly)
sumstats.y1.firth <- run_regenie_step2_bt(
bedfile = "cc_imb_geno",
phenofile = "cc_imb_pheno.txt",
phenocol = "Y1",
bsize = 300,
firth = TRUE
)
sumstats.y2.firth <- run_regenie_step2_bt(
bedfile = "cc_imb_geno",
phenofile = "cc_imb_pheno.txt",
phenocol = "Y2",
bsize = 300,
firth = TRUE
)
sumstats.y3.firth <- run_regenie_step2_bt(
bedfile = "cc_imb_geno",
phenofile = "cc_imb_pheno.txt",
phenocol = "Y3",
bsize = 300,
firth = TRUE
)
Looking at the test statistics and p-values:
qq(10^-sumstats.y1.firth$LOG10P)
Version | Author | Date |
---|---|---|
977dc7f | Joelle Mbatchou | 2024-06-14 |
plot.sumstats.hist(sumstats.y1.firth, title = "Y1 with Firth")
Version | Author | Date |
---|---|---|
977dc7f | Joelle Mbatchou | 2024-06-14 |
plot.sumstats.hist.by.group(sumstats.y1.firth, "Y1 with Firth")
Version | Author | Date |
---|---|---|
977dc7f | Joelle Mbatchou | 2024-06-14 |
qq(10^-sumstats.y2.firth$LOG10P)
Version | Author | Date |
---|---|---|
977dc7f | Joelle Mbatchou | 2024-06-14 |
plot.sumstats.hist(sumstats.y2.firth, title = "Y2 with Firth")
Version | Author | Date |
---|---|---|
977dc7f | Joelle Mbatchou | 2024-06-14 |
plot.sumstats.hist.by.group(sumstats.y2.firth, "Y2 with Firth")
Version | Author | Date |
---|---|---|
977dc7f | Joelle Mbatchou | 2024-06-14 |
qq(10^-sumstats.y3.firth$LOG10P)
Version | Author | Date |
---|---|---|
977dc7f | Joelle Mbatchou | 2024-06-14 |
plot.sumstats.hist(sumstats.y3.firth, title = "Y3 with Firth")
Version | Author | Date |
---|---|---|
977dc7f | Joelle Mbatchou | 2024-06-14 |
plot.sumstats.hist.by.group(sumstats.y3.firth, "Y3 with Firth")
Version | Author | Date |
---|---|---|
977dc7f | Joelle Mbatchou | 2024-06-14 |
sessionInfo()
R version 4.3.0 (2023-04-21)
Platform: aarch64-apple-darwin20 (64-bit)
Running under: macOS 14.5
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/lib/libRlapack.dylib; LAPACK version 3.11.0
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
time zone: America/New_York
tzcode source: internal
attached base packages:
[1] parallel stats graphics grDevices utils datasets methods
[8] base
other attached packages:
[1] logistf_1.25.0 ggplot2_3.4.2 qqman_0.1.8 dplyr_1.1.2
[5] data.table_1.14.8
loaded via a namespace (and not attached):
[1] gtable_0.3.3 shape_1.4.6 xfun_0.39
[4] bslib_0.5.0 formula.tools_1.7.1 lattice_0.21-8
[7] vctrs_0.6.2 tools_4.3.0 generics_0.1.3
[10] tibble_3.2.1 fansi_1.0.4 highr_0.10
[13] pan_1.8 jomo_2.7-6 pkgconfig_2.0.3
[16] Matrix_1.5-4 lifecycle_1.0.3 farver_2.1.1
[19] compiler_4.3.0 stringr_1.5.0 git2r_0.32.0
[22] munsell_0.5.0 codetools_0.2-19 httpuv_1.6.11
[25] htmltools_0.5.5 sass_0.4.6 yaml_2.3.7
[28] glmnet_4.1-7 mice_3.16.0 crayon_1.5.2
[31] nloptr_2.0.3 later_1.3.1 pillar_1.9.0
[34] jquerylib_0.1.4 whisker_0.4.1 tidyr_1.3.0
[37] MASS_7.3-58.4 cachem_1.0.8 iterators_1.0.14
[40] rpart_4.1.19 boot_1.3-28.1 mitml_0.4-5
[43] foreach_1.5.2 nlme_3.1-162 tidyselect_1.2.0
[46] digest_0.6.31 stringi_1.7.12 purrr_1.0.1
[49] labeling_0.4.2 splines_4.3.0 operator.tools_1.6.3
[52] rprojroot_2.0.3 fastmap_1.1.1 grid_4.3.0
[55] colorspace_2.1-0 cli_3.6.1 magrittr_2.0.3
[58] survival_3.5-5 utf8_1.2.3 broom_1.0.5
[61] withr_2.5.0 scales_1.2.1 promises_1.2.0.1
[64] backports_1.4.1 calibrate_1.7.7 rmarkdown_2.22
[67] nnet_7.3-18 lme4_1.1-33 workflowr_1.7.0
[70] evaluate_0.21 knitr_1.43 mgcv_1.8-42
[73] rlang_1.1.1 Rcpp_1.0.10 glue_1.6.2
[76] minqa_1.2.5 rstudioapi_0.14 jsonlite_1.8.5
[79] R6_2.5.1 fs_1.6.2