Last updated: 2024-06-13

Checks: 5 2

Knit directory: SISG2024_Association_Mapping/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20230530) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

The following chunks had caches available:
  • unnamed-chunk-15

To ensure reproducibility of the results, delete the cache directory Session02_practical_Key_cache and re-run the analysis. To have workflowr automatically delete the cache directory prior to building the file, set delete_cache = TRUE when running wflow_build() or wflow_publish().

Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.

absolute relative
/Users/joelle.mbatchou/SISG/2024/SISG2024_Association_Mapping/data/ data

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 5558558. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    analysis/.DS_Store
    Ignored:    data/sim_rels_geno.bed
    Ignored:    exe/
    Ignored:    gwas_plink.log
    Ignored:    gwas_regenie.log
    Ignored:    lectures/
    Ignored:    mk_website.R
    Ignored:    step2_gwas_regenie.log
    Ignored:    tmp/

Untracked files:
    Untracked:  .Rhistory
    Untracked:  analysis/SISGM15_prac4Solution.Rmd
    Untracked:  analysis/SISGM15_prac5Solution.Rmd
    Untracked:  analysis/SISGM15_prac6Solution.Rmd
    Untracked:  analysis/SISGM15_prac9Solution.Rmd
    Untracked:  analysis/Session02_practical_Key_cache/
    Untracked:  analysis/Session03_practical_Key.Rmd
    Untracked:  analysis/Session07_practical.Rmd
    Untracked:  analysis/Session07_practical_Key.Rmd
    Untracked:  analysis/Session08_practical.Rmd
    Untracked:  analysis/Session08_practical_Key.Rmd
    Untracked:  data/run_regenie.r
    Untracked:  notes.txt

Unstaged changes:
    Modified:   .gitignore

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/Session02_practical_Key.Rmd) and HTML (docs/Session02_practical_Key.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 5558558 Joelle Mbatchou 2024-06-13 update practical
html 6000be1 Joelle Mbatchou 2024-06-12 update practicals
html a2c3f7a Joelle Mbatchou 2024-06-05 remove keys
html de4ef79 Joelle Mbatchou 2024-06-05 add docs dir

Before you begin:

  • Make sure that R is installed on your computer
  • For this lab, we will use the following R libraries:
library(data.table)
library(dplyr)
library(bigsnpr)
library(ggplot2)

Introduction

We will be working with a subset of the genotype data from the Human Genome Diversity Panel (HGDP) and HapMap.

The file “YRI_CEU_ASW_MEX_NAM.bed” is a binary file in PLINK BED format with accompanying BIM and FAM files. It contains the genotype data at autosomal SNPs (i.e. chromosomes 1-22) for:

  • Native American samples from HGDP
  • Four population samples from HapMap:
    • Yoruba in Ibadan, Nigeria (YRI)
    • Utah residents with ancestry from Northern and Western Europe (CEU)
    • Mexican Americans in Los Angeles, California (MXL)
    • African Americans from the south-western United States (ASW)

File with ancestry labels assignment for each sample: Population_Sample_Info.txt

Data preparation

Let’s first load the HGDP data into the R session. We need to define the path to the directory containing the PLINK BED and the ancestry label files (change the path to the file location).

# change this to the directory on your machine
HGDP_dir <- "/SISGM19/data/" 

Also specify the path to the PLINK2 binary

plink2_binary <- "/SISGM19/bin/plink2" 

We can now read the PLINK BED and FAM files (recall the BED file is a binary file):

HGDP_bim <- fread(sprintf("%s/YRI_CEU_ASW_MEX_NAM.bim", HGDP_dir), header = FALSE)
head(HGDP_bim, 3)
   V1        V2 V3      V4 V5 V6
1:  1 rs9442372  0 1008567  1  2
2:  1 rs2887286  0 1145994  1  2
3:  1 rs3813199  0 1148140  1  2
HGDP_fam <- fread(sprintf("%s/YRI_CEU_ASW_MEX_NAM.fam", HGDP_dir), header = FALSE)
head(HGDP_fam, 3)
     V1        V2 V3 V4 V5 V6
1: 1432 HGDP00702  0  0  2 -9
2: 1433 HGDP00703  0  0  1 -9
3: 1434 HGDP00704  0  0  2 -9

When reading the ancestry label file, we need to make sure the order of samples matches that in the PLINK data:

HGDP_ancestry_df <- fread(sprintf("%s/Population_Sample_Info.txt", HGDP_dir))
HGDP_ancestry_df <- left_join(HGDP_fam[,c("V1","V2")], HGDP_ancestry_df, by = c("V1" = "FID", "V2" = "IID"))
head(HGDP_ancestry_df, 3)
     V1        V2 Population
1: 1432 HGDP00702        NAM
2: 1433 HGDP00703        NAM
3: 1434 HGDP00704        NAM

Exercises

Here are some things to look at:

  1. Examine the dataset:
  • How many samples are present?
str(HGDP_fam)
Classes 'data.table' and 'data.frame':  604 obs. of  6 variables:
 $ V1: chr  "1432" "1433" "1434" "1436" ...
 $ V2: chr  "HGDP00702" "HGDP00703" "HGDP00704" "HGDP00706" ...
 $ V3: chr  "0" "0" "0" "0" ...
 $ V4: chr  "0" "0" "0" "0" ...
 $ V5: int  2 1 2 2 2 1 2 1 2 1 ...
 $ V6: int  -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 ...
 - attr(*, ".internal.selfref")=<externalptr> 
  • How many SNPs?
str(HGDP_bim)
Classes 'data.table' and 'data.frame':  150872 obs. of  6 variables:
 $ V1: int  1 1 1 1 1 1 1 1 1 1 ...
 $ V2: chr  "rs9442372" "rs2887286" "rs3813199" "rs6685064" ...
 $ V3: int  0 0 0 0 0 0 0 0 0 0 ...
 $ V4: int  1008567 1145994 1148140 1201155 1452629 1878053 2013924 2023116 2072349 2072426 ...
 $ V5: int  1 1 1 1 1 1 1 1 1 1 ...
 $ V6: int  2 2 2 2 2 2 2 2 2 2 ...
 - attr(*, ".internal.selfref")=<externalptr> 
  • What is the number of samples in each population?
table(HGDP_ancestry_df$Population)

ASW CEU MXL NAM YRI 
 87 165  86  63 203 
  1. Get the first 10 principal components (PCs) in PLINK using all SNPs.
cmd <- sprintf("%s --bfile %s/YRI_CEU_ASW_MEX_NAM --pca 10 --out pca_plink", plink2_binary, HGDP_dir)
system(cmd)

This generates two files pca_plink.eigenvec containing the PCs (eigenvectors), and pca_plink.eigenval containing the top eigenvalues.

  1. Read in the PCs in R and make a scatterplot of the first two PCs with each point colored by population membership.
PC_df <- left_join(HGDP_ancestry_df, fread("pca_plink.eigenvec"), by = c("V1" = "#FID", "V2" = "IID"))
ggplot(PC_df, aes(x=PC1, y=PC2, color = Population)) +
  geom_point()

Version Author Date
de1eb44 Joelle Mbatchou 2024-06-12
  1. Interpret the first two PCs, what ancestries are they reflecting?

  2. Read in the eigenvalues and make a scree plot corresponding for these first 10 PCs. Estimate the proportion of variance explained by the first two PCs.

eigenvalues_df <- fread("pca_plink.eigenval", header = FALSE)
ggplot(eigenvalues_df, aes(x = 1:10, y = V1)) +
  geom_point() +
  geom_line() +
  scale_x_continuous(breaks = 1:10) +
  labs(x = "PC", y = "Eigenvalue")

Version Author Date
de1eb44 Joelle Mbatchou 2024-06-12
sum(eigenvalues_df$V1[1:2]) / sum(eigenvalues_df$V1)
[1] 0.8308752
  1. Now redo Question 2 above using the bigsnpr R package specifying a \(r^2\) threshold of 0.2 (i.e. LD pruning) as well as a minimum minor allele count (MAC) of 20.
obj.bed <- bed(bedfile = sprintf("%s/YRI_CEU_ASW_MEX_NAM.bed", HGDP_dir))
pca.bigsnpr <- bed_autoSVD(
  obj.bed, 
  thr.r2 = 0.2, # R^2 threshold
  k = 10, # number of PCs
  min.mac = 20 # minimum minor allele count (MAC) filter
)

Phase of clumping (on MAC) at r^2 > 0.2.. keep 87127 variants.
Discarding 48 variants with MAC < 20.

Iteration 1:
Computing SVD..
The default of 'doScale' is FALSE now for stability;
  set options(mc_doScale_quiet=TRUE) to suppress this (once per session) message
0 outlier variant detected..

Converged!
  • You can evaluate the PCA results using
# plot PC2 vs PC1
plot(pca.bigsnpr, type = "scores", scores = 1:2)

Version Author Date
de1eb44 Joelle Mbatchou 2024-06-12
# scree plot
plot(pca.bigsnpr) 

Version Author Date
de1eb44 Joelle Mbatchou 2024-06-12
# plot SNP loadings for the first two PCs
plot(pca.bigsnpr, type = "loadings", loadings = 1:2, coeff = 0.4)

Version Author Date
de1eb44 Joelle Mbatchou 2024-06-12
  • Make a scatter plot of the first two principal components (PCs) with each point colored according to population membership. Does the plot change from the one in Question 2?
plot(pca.bigsnpr, type = "scores", scores = 1:2) +
  aes(color = HGDP_ancestry_df$Population) +
  labs(color = "Population")

Version Author Date
de1eb44 Joelle Mbatchou 2024-06-12
  • Check the SNP loadings for the first 5 PCs.
plot(pca.bigsnpr, type = "loadings", loadings = 1:5, coeff = 0.4)

Version Author Date
de1eb44 Joelle Mbatchou 2024-06-12
  1. Predict the proportion of Native American ancestry for the HapMap MXL based on the PCA output in Question 3 using one of the principal components and assuming that the HapMap MXL have negligible African Ancestry. Which PC is most appropriate for this analysis?

Hint: To compute the average PC2 value for individuals of CEU ancestry

ceu.mean <- with(PC_df, mean(PC2[Population == "CEU"]))

Do the same for individuals of NAM ancestry. How can you express distances of the MXL individuals relative to those means based on the chosen PC?

nam.mean <- with(PC_df, mean(PC2[Population == "NAM"]))
mxl.prop.nam <- with(PC_df, (ceu.mean - PC2[Population == "MXL"]) / abs(ceu.mean - nam.mean))
summary(mxl.prop.nam)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
0.05325 0.37687 0.48112 0.47207 0.57836 0.81147 
  1. Make a barplot of the proportional Native American/European ancestry estimates based on your output of question 7.
sorted.props.nam <- sort(mxl.prop.nam, decreasing = TRUE)
df_mxl_props <- data.frame(
  anc.props = c(sorted.props.nam, 1 - sorted.props.nam),
  x = rep(1:length(sorted.props.nam), times = 2),
  population.labels = rep(c("NAM", "CEU"), each = length(sorted.props.nam))
)
ggplot(df_mxl_props, aes(x = x, y = anc.props, fill = population.labels)) +
  geom_bar(position="stack", stat="identity") +
  labs(x="Sample", y = "Ancestry Proportion", fill = "Population")

Version Author Date
de1eb44 Joelle Mbatchou 2024-06-12

Extra

  1. Check if there are samples related 2nd degree or closer. If so, run PCA as in Question 6 removing these samples then project the remaining samples onto the PC space. Plot the top 2 PCs.
  • The command to check relatedness is:
# check for 2nd degree relateds or closer
relatedness_info <- snp_plinkKINGQC(
  plink2.path = plink2_binary, 
  bedfile.in = sprintf("%s/YRI_CEU_ASW_MEX_NAM.bed", HGDP_dir), 
  thr.king = 2^-3.5, # threshold to identify 2nd degree relateds
  make.bed = FALSE
)

This returns a data frame which contains all pairs of individuals related 2nd degree or closer.

str(relatedness_info)
'data.frame':   362 obs. of  8 variables:
 $ FID1   : chr  "1563" "1567" "1567" "1570" ...
 $ IID1   : chr  "HGDP00845" "HGDP00849" "HGDP00849" "HGDP00852" ...
 $ FID2   : chr  "1556" "1556" "1561" "1551" ...
 $ IID2   : chr  "HGDP00838" "HGDP00838" "HGDP00843" "HGDP00832" ...
 $ NSNP   : int  150801 150802 150832 150816 150822 150814 150819 150815 150674 150796 ...
 $ HETHET : num  0.0976 0.1069 0.1059 0.099 0.1022 ...
 $ IBS0   : num  0.0221 0.0219 0.0223 0.0219 0.0227 ...
 $ KINSHIP: num  0.104 0.126 0.13 0.118 0.118 ...
  • We can then remove them when calling bed_autoSVD() using the ind.row argument.
ind.rel <- match(c(relatedness_info$IID1, relatedness_info$IID2), obj.bed$fam$sample.ID) # relateds
ind.norel <- rows_along(obj.bed)[-ind.rel] # unrelateds
# Run PCA on unrelateds
obj.svd2 <- bed_autoSVD(
  obj.bed, 
  thr.r2 = 0.2, # R^2 threshold
  k = 10, # number of PCs
  min.mac = 20, # minimum minor allele count (MAC) filter
  ind.row = ind.norel
)

Phase of clumping (on MAC) at r^2 > 0.2.. keep 77173 variants.
Discarding 12226 variants with MAC < 20.

Iteration 1:
Computing SVD..
0 outlier variant detected..

Converged!
  • Use bed_projectSelfPCA() to project related samples on the PC space. (Hint: This tutorial document from bigsnpr will be helpful – see the last section ‘Project remaining individuals’)
PCs <- matrix(NA, nrow(obj.bed), ncol(obj.svd2$u))
# PCs for unrelateds
PCs[ind.norel, ] <- predict(obj.svd2)
# Project relateds on PC space
proj <- bed_projectSelfPCA(
  obj.svd2, 
  obj.bed,
  ind.row = ind.rel
  )
PCs[ind.rel, ] <- proj$OADP_proj

# Plot the top 2 PCs with projections
pop_palette <- c("#E69F00", "#56B4E9", "#009E73", "#F0E442", "#0072B2")
names(pop_palette) <- unique(HGDP_ancestry_df$Population)

plot( # for unrelateds
  PCs[ind.norel, 1:2], 
  col = pop_palette[HGDP_ancestry_df$Population[ind.norel]], 
  pch = 1, xlab = "PC1", ylab = "PC2"
  )
points( # for relateds
  PCs[ind.rel, 1:2], 
  col = pop_palette[HGDP_ancestry_df$Population[ind.rel]], 
  pch = 2
  )
# add the legends
legend("topleft", legend = names(pop_palette), col = pop_palette, pch = 19, title = "Population")
legend("topright", legend = c("Model", "Projected"), col = c("black", "black"), pch = c(1, 2))

Version Author Date
de1eb44 Joelle Mbatchou 2024-06-12

sessionInfo()
R version 4.3.0 (2023-04-21)
Platform: aarch64-apple-darwin20 (64-bit)
Running under: macOS 14.5

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/lib/libRblas.0.dylib 
LAPACK: /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/lib/libRlapack.dylib;  LAPACK version 3.11.0

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

time zone: America/New_York
tzcode source: internal

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] ggplot2_3.4.2     bigsnpr_1.12.9    bigstatsr_1.5.12  dplyr_1.1.2      
[5] data.table_1.14.8

loaded via a namespace (and not attached):
 [1] gtable_0.3.3       xfun_0.39          bslib_0.5.0        lattice_0.21-8    
 [5] bigassertr_0.1.6   vctrs_0.6.2        tools_4.3.0        ps_1.7.5          
 [9] generics_0.1.3     parallel_4.3.0     tibble_3.2.1       fansi_1.0.4       
[13] DEoptimR_1.0-14    highr_0.10         pkgconfig_2.0.3    Matrix_1.5-4      
[17] rngtools_1.5.2     lifecycle_1.0.3    compiler_4.3.0     farver_2.1.1      
[21] stringr_1.5.0      git2r_0.32.0       munsell_0.5.0      bigparallelr_0.3.2
[25] codetools_0.2-19   httpuv_1.6.11      htmltools_0.5.5    sass_0.4.6        
[29] yaml_2.3.7         hexbin_1.28.3      later_1.3.1        pillar_1.9.0      
[33] jquerylib_0.1.4    whisker_0.4.1      cachem_1.0.8       doRNG_1.8.6       
[37] iterators_1.0.14   foreach_1.5.2      robustbase_0.99-0  RSpectra_0.16-1   
[41] parallelly_1.36.0  tidyselect_1.2.0   digest_0.6.31      stringi_1.7.12    
[45] labeling_0.4.2     cowplot_1.1.1      rprojroot_2.0.3    fastmap_1.1.1     
[49] grid_4.3.0         colorspace_2.1-0   cli_3.6.1          magrittr_2.0.3    
[53] utf8_1.2.3         bigutilsr_0.3.4    withr_2.5.0        scales_1.2.1      
[57] promises_1.2.0.1   rmarkdown_2.22     bigsparser_0.6.1   rmio_0.4.0        
[61] bit_4.0.5          bigreadr_0.2.5     workflowr_1.7.0    evaluate_0.21     
[65] knitr_1.43         ff_4.0.9           doParallel_1.0.17  viridisLite_0.4.2 
[69] rlang_1.1.1        Rcpp_1.0.10        glue_1.6.2         rstudioapi_0.14   
[73] jsonlite_1.8.5     R6_2.5.1           fs_1.6.2           flock_0.7