Last updated: 2022-07-25

Checks: 7 0

Knit directory: SISG2022_Association_Mapping/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20220530) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version ef4b6bf. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    analysis/.Rhistory
    Ignored:    code/.Rhistory
    Ignored:    data/.DS_Store
    Ignored:    lectures/.DS_Store

Untracked files:
    Untracked:  analysis/Session02_practical_Key.Rmd
    Untracked:  analysis/Session03_practical_Key.Rmd
    Untracked:  analysis/Session07_practical_Key.Rmd
    Untracked:  analysis/Session08_practical_Key.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/Session01_practical_Key.Rmd) and HTML (docs/Session01_practical_Key.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd ef4b6bf Joelle Mbatchou 2022-07-25 add key
html 0999600 Joelle Mbatchou 2022-07-25 Build site.
Rmd 1c5a6de Joelle Mbatchou 2022-07-25 add key

Case-Control Association Testing

Before you begin:

  • Make sure that R is installed on your computer
  • For this lab, we will use the data.table and dplyr library
require(data.table)
require(dplyr)
require(tidyr)
require(ggplot2)

Introduction

We will be using the LHON dataset covered in the lecture notes for this portion of the exercises. The LHON dataset is from a case-control study and includes both phenotype and genotype data for a candidate gene.

Let’s first load the LHON data file into the R session. You can read the file directly from the web (if you are connected to the web) using the following command:

LHON.df <- fread("https://raw.githubusercontent.com/joellembatchou/SISG2022_Association_Mapping/master/data/LHON.txt", header=TRUE)

Alternatively, you can save the file to your computer and read it into R from the directory where the file is located:

LHON.df <- fread("LHON.txt", header=TRUE)

Exercises

Here are some things to look at:

  1. Examine the variables in the dataset:
# Each row is a sample
LHON.df %>% 
  head
   IID GENO   PHENO
1: ID1   TT CONTROL
2: ID2   CT CONTROL
3: ID3   TT    CASE
4: ID4   CT CONTROL
5: ID5   TT CONTROL
6: ID6   TT CONTROL
# Character variables
LHON.df %>% 
  str
Classes 'data.table' and 'data.frame':  328 obs. of  3 variables:
 $ IID  : chr  "ID1" "ID2" "ID3" "ID4" ...
 $ GENO : chr  "TT" "CT" "TT" "CT" ...
 $ PHENO: chr  "CONTROL" "CONTROL" "CASE" "CONTROL" ...
 - attr(*, ".internal.selfref")=<externalptr> 
  • How many observations?
LHON.df %>% 
  nrow
[1] 328
  • How many cases/controls?
LHON.df %>% select(PHENO) %>% table
.
   CASE CONTROL 
     89     239 
  • What is the distribution of the genotypes across cases/controls?
LHON.df %>% 
      select(PHENO, GENO) %>% 
      table
         GENO
PHENO      CC  CT  TT
  CASE      6   8  75
  CONTROL  10  66 163
  • What about for allele types?
LHON.df %>% 
      group_by(PHENO) %>% 
      summarize(
        n.C = 2 * sum(GENO == "CC") + 1 * sum(GENO == "CT"),
        n.T = 2 * sum(GENO == "TT") + 1 * sum(GENO == "CT")
      )
# A tibble: 2 × 3
  PHENO     n.C   n.T
  <chr>   <dbl> <dbl>
1 CASE       20   158
2 CONTROL    86   392
  1. Perform a logistic regression analysis for this data with CC as the reference genotype using the glm() function. (Hint: make sure to convert the phenotype to a binary 0/1 variable)
LHON.df <- LHON.df %>% 
  mutate(
    PHENO.bin = as.numeric(PHENO == "CASE"),
    GENO.factor = factor(GENO, levels = c("CC", "CT", "TT"))
    )
log.model <- glm(PHENO.bin ~ GENO.factor, data = LHON.df, family = binomial(link = "logit")) 

View summary information from the fitted model, including coefficient estimates, standard errors and p-values.

log.model %>% summary

Call:
glm(formula = PHENO.bin ~ GENO.factor, family = binomial(link = "logit"), 
    data = LHON.df)

Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-0.9695  -0.8701  -0.8701   1.5197   2.1093  

Coefficients:
              Estimate Std. Error z value Pr(>|z|)  
(Intercept)    -0.5108     0.5164  -0.989   0.3226  
GENO.factorCT  -1.5994     0.6378  -2.508   0.0122 *
GENO.factorTT  -0.2654     0.5349  -0.496   0.6197  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 383.49  on 327  degrees of freedom
Residual deviance: 368.48  on 325  degrees of freedom
AIC: 374.48

Number of Fisher Scoring iterations: 4
  1. Obtain odds ratios and confidence intervals for the CT and TT genotypes relative to the CC reference genotype. Interpret.
  • By hand
# OR for CT and TT
log.model %>% coef %>% exp
  (Intercept) GENO.factorCT GENO.factorTT 
    0.6000000     0.2020202     0.7668712 
# CI for CT
exp( -1.5994 + c(-1,1) * 1.96 * 0.6378)
[1] 0.05787394 0.70517308
# CI for TT
exp( -0.2654 + c(-1,1) * 1.96 * 0.5349)
[1] 0.2687956 2.1880353
  • Using R function confint.default()
confint.default(log.model) %>% exp
                   2.5 %   97.5 %
(Intercept)   0.21806837 1.650858
GENO.factorCT 0.05787424 0.705187
GENO.factorTT 0.26878265 2.187981
  1. Is there evidence of differences in odds of being a case for the CT and TT genotypes (compared to CC)?

Check the p-values.

Extra: 5. Perform the logistic regression analysis with the additive genotype coding. Obtain odds ratios and confidence intervals. Is there evidence of an association? How does it compare with the 2-parameter model?

LHON.df <- LHON.df %>% 
  mutate(
    GENO.num = 0 + 1 * (GENO == "CT") + 2 * (GENO == "TT")
    )
log.model.add <- glm(PHENO.bin ~ GENO.num, data = LHON.df, family = binomial(link = "logit")) 
log.model.add %>% summary

Call:
glm(formula = PHENO.bin ~ GENO.num, family = binomial(link = "logit"), 
    data = LHON.df)

Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-0.8436  -0.8436  -0.6854   1.5531   1.9797  

Coefficients:
            Estimate Std. Error z value Pr(>|z|)    
(Intercept)  -1.8077     0.4554  -3.970  7.2e-05 ***
GENO.num      0.4787     0.2505   1.911   0.0559 .  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 383.49  on 327  degrees of freedom
Residual deviance: 379.47  on 326  degrees of freedom
AIC: 383.47

Number of Fisher Scoring iterations: 4
log.model.add %>% coef %>% exp
(Intercept)    GENO.num 
  0.1640322   1.6140439 
confint.default(log.model.add) %>% exp
                 2.5 %    97.5 %
(Intercept) 0.06718883 0.4004616
GENO.num    0.98792490 2.6369796

Association Testing with Quantitative Traits

Introduction

We will be using the Blood Pressure dataset for this portion of the exercises. This dataset contains diastolic and systolic blood pressure measurements for 1000 individuals, and genotype data at 11 SNPs in a candidate gene for blood pressure. Covariates such as gender (sex) and body mass index (bmi) are included as well.

Let’s first load the file into R. You can read the file directly from the web (if you are connected to the web) using the following command:

BP.df <- fread("https://raw.githubusercontent.com/joellembatchou/SISG2022_Association_Mapping/master/data/bpdata.csv", header=TRUE)

Alternatively, you can save the file to your computer and read it into R from the directory where the file is located:

BP.df <- fread("bpdata.csv", header=TRUE)

Exercises

Let’s take a look at the dataset:

BP.df %>% head
   V1    sex sbp dbp snp1 snp2 snp3 snp4 snp5 snp6 snp7 snp8 snp9 snp10 snp11
1:  1 FEMALE 171  89   CC   TT   TT   TT   CC   GG   AA   TT   TT    CC    TT
2:  2   MALE 160  99   TT   TT   CC <NA>   CC   AG   AT   CC   CT    CC    CT
3:  3 FEMALE 142  83   CT   TT   TC   CT   CC   AG   TT   CC   TT    CT    TT
4:  4   MALE 126  71   CT   TT   CC <NA>   CC   AA   TT   CC   TT    CT    CT
5:  5 FEMALE 126  82   CT   TT   CC   CC   CC   AA   TT   CC   TT    CT    CT
6:  6 FEMALE 132  89   CT   TT   CC   CC   CC <NA>   TT   CC   TT    TT    CT
   bmi
1:  25
2:  35
3:  34
4:  32
5:  34
6:  25
BP.df %>% str
Classes 'data.table' and 'data.frame':  1000 obs. of  16 variables:
 $ V1   : int  1 2 3 4 5 6 7 8 9 10 ...
 $ sex  : chr  "FEMALE" "MALE" "FEMALE" "MALE" ...
 $ sbp  : int  171 160 142 126 126 132 136 121 120 136 ...
 $ dbp  : int  89 99 83 71 82 89 58 87 69 88 ...
 $ snp1 : chr  "CC" "TT" "CT" "CT" ...
 $ snp2 : chr  "TT" "TT" "TT" "TT" ...
 $ snp3 : chr  "TT" "CC" "TC" "CC" ...
 $ snp4 : chr  "TT" NA "CT" NA ...
 $ snp5 : chr  "CC" "CC" "CC" "CC" ...
 $ snp6 : chr  "GG" "AG" "AG" "AA" ...
 $ snp7 : chr  "AA" "AT" "TT" "TT" ...
 $ snp8 : chr  "TT" "CC" "CC" "CC" ...
 $ snp9 : chr  "TT" "CT" "TT" "TT" ...
 $ snp10: chr  "CC" "CC" "CT" "CT" ...
 $ snp11: chr  "TT" "CT" "TT" "CT" ...
 $ bmi  : int  25 35 34 32 34 25 22 33 21 29 ...
 - attr(*, ".internal.selfref")=<externalptr> 
  1. Perform a linear regression of systolic blood pressure (sbp) on SNP3 using the lm() function. Compare the estimates, confidence intervals and p-values you get.
  • Additive (linear) model: let’s count the number of T allele
BP.df %>% select(snp3) %>% table
.
 CC  TC  TT 
621 304  35 
BP.df <- BP.df %>%
  mutate(snp3.add = 1 * (snp3 == "TC") + 2 * (snp3 == "TT"))
lm.add <- lm(sbp ~ snp3.add, data = BP.df) 
lm.add %>% summary

Call:
lm(formula = sbp ~ snp3.add, data = BP.df)

Residuals:
    Min      1Q  Median      3Q     Max 
-55.974 -12.418  -0.974  10.582  60.582 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) 140.4179     0.7219 194.506   <2e-16 ***
snp3.add      2.5556     1.0615   2.407   0.0163 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 18.33 on 958 degrees of freedom
  (40 observations deleted due to missingness)
Multiple R-squared:  0.006014,  Adjusted R-squared:  0.004976 
F-statistic: 5.796 on 1 and 958 DF,  p-value: 0.01625
lm.add %>% confint.default
                  2.5 %     97.5 %
(Intercept) 139.0029685 141.832849
snp3.add      0.4750661   4.636205

Let’s check how it compares when we count the number of C alleles.

BP.df <- BP.df %>%
  mutate(snp3.add.C = 1 * (snp3 == "TC") + 2 * (snp3 == "CC"))
lm.add.C <- lm(sbp ~ snp3.add.C, data = BP.df) 
lm.add.C %>% summary

Call:
lm(formula = sbp ~ snp3.add.C, data = BP.df)

Residuals:
    Min      1Q  Median      3Q     Max 
-55.974 -12.418  -0.974  10.582  60.582 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  145.529      1.809  80.446   <2e-16 ***
snp3.add.C    -2.556      1.062  -2.407   0.0163 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 18.33 on 958 degrees of freedom
  (40 observations deleted due to missingness)
Multiple R-squared:  0.006014,  Adjusted R-squared:  0.004976 
F-statistic: 5.796 on 1 and 958 DF,  p-value: 0.01625
  • dominant model (for T allele)
BP.df <- BP.df %>%
  mutate(snp3.dom = 1 * (snp3 == "TC" | snp3 == "TT"))
BP.df %>% select(snp3.dom, snp3) %>% table
        snp3
snp3.dom  CC  TC  TT
       0 621   0   0
       1   0 304  35
lm.dom <- lm(sbp ~ snp3.dom, data = BP.df) 
lm.dom %>% summary

Call:
lm(formula = sbp ~ snp3.dom, data = BP.df)

Residuals:
    Min      1Q  Median      3Q     Max 
-56.218 -12.428  -0.823  10.572  60.572 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  140.428      0.736 190.801   <2e-16 ***
snp3.dom       2.790      1.238   2.253   0.0245 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 18.34 on 958 degrees of freedom
  (40 observations deleted due to missingness)
Multiple R-squared:  0.005269,  Adjusted R-squared:  0.00423 
F-statistic: 5.074 on 1 and 958 DF,  p-value: 0.02451
lm.dom %>% confint.default
                  2.5 %     97.5 %
(Intercept) 138.9858186 141.870864
snp3.dom      0.3624521   5.217443
  • recessive model (for T allele)
BP.df <- BP.df %>%
  mutate(snp3.rec = 1 * (snp3 == "TT"))
BP.df %>% select(snp3.rec, snp3) %>% table
        snp3
snp3.rec  CC  TC  TT
       0 621 304   0
       1   0   0  35
lm.rec <- lm(sbp ~ snp3.rec, data = BP.df) 
lm.rec %>% summary

Call:
lm(formula = sbp ~ snp3.rec, data = BP.df)

Residuals:
    Min      1Q  Median      3Q     Max 
-54.251 -12.501  -1.251  10.749  59.749 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  141.251      0.604 233.854   <2e-16 ***
snp3.rec       4.463      3.163   1.411    0.159    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 18.37 on 958 degrees of freedom
  (40 observations deleted due to missingness)
Multiple R-squared:  0.002074,  Adjusted R-squared:  0.001032 
F-statistic: 1.991 on 1 and 958 DF,  p-value: 0.1586
lm.rec %>% confint.default
                2.5 %    97.5 %
(Intercept) 140.06697 142.43465
snp3.rec     -1.73658  10.66353
  • 2 parameter model
lm.rec <- lm(sbp ~ snp3, data = BP.df) 
lm.rec %>% summary

Call:
lm(formula = sbp ~ snp3, data = BP.df)

Residuals:
    Min      1Q  Median      3Q     Max 
-55.931 -12.428  -0.931  10.572  60.572 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) 140.4283     0.7361 190.773   <2e-16 ***
snp3TC        2.5026     1.2840   1.949   0.0516 .  
snp3TT        5.2859     3.1868   1.659   0.0975 .  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 18.34 on 957 degrees of freedom
  (40 observations deleted due to missingness)
Multiple R-squared:  0.006019,  Adjusted R-squared:  0.003942 
F-statistic: 2.898 on 2 and 957 DF,  p-value: 0.05563
lm.rec %>% confint.default
                   2.5 %     97.5 %
(Intercept) 138.98560975 141.871073
snp3TC       -0.01405184   5.019211
snp3TT       -0.96007686  11.531966
  1. Provide a plot illustrating the relationship between sbp and the three genotypes at SNP3.
BP.df %>%
  drop_na(snp3) %>%
  ggplot(aes(x = snp3, y = sbp, fill = snp3)) +
  geom_boxplot()

Version Author Date
0999600 Joelle Mbatchou 2022-07-25

For question 3 and 4 below, R also has a ‘formula’ syntax, frequently used when specifying regression models with many predictors. To regress an outcome y on several covariates, the syntax is:

outcome ~ covariate1 + covariate2 + covariate3
  1. Now redo the linear regression analysis of sbp from question 1 for the additive model, but this time adjust for sex and bmi. Do the results change?
lm(sbp ~ snp3.add + sex + bmi, data = BP.df) %>% summary

Call:
lm(formula = sbp ~ snp3.add + sex + bmi, data = BP.df)

Residuals:
   Min     1Q Median     3Q    Max 
-58.83 -12.81  -0.82  11.58  57.80 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept) 145.85380    3.00271  48.574  < 2e-16 ***
snp3.add      2.63566    1.05434   2.500   0.0126 *  
sexMALE      -4.77580    1.17642  -4.060 5.32e-05 ***
bmi          -0.09837    0.09481  -1.038   0.2997    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 18.19 on 955 degrees of freedom
  (41 observations deleted due to missingness)
Multiple R-squared:  0.02402,   Adjusted R-squared:  0.02096 
F-statistic: 7.836 on 3 and 955 DF,  p-value: 3.608e-05
  1. What proportion of the heritability of sbp is explained by all of the 11 SNPs together?
 lm(sbp ~ snp1+snp2+snp3+snp4+snp5+snp6+snp7+snp8+snp9+snp10+snp11, data = BP.df) %>% summary

Call:
lm(formula = sbp ~ snp1 + snp2 + snp3 + snp4 + snp5 + snp6 + 
    snp7 + snp8 + snp9 + snp10 + snp11, data = BP.df)

Residuals:
    Min      1Q  Median      3Q     Max 
-50.722 -11.967  -0.703  11.021  61.704 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) 133.1726    12.4033  10.737   <2e-16 ***
snp1CT       -1.7048     4.5991  -0.371    0.711    
snp1TT        1.9319     8.2839   0.233    0.816    
snp2AT        0.7347     5.5923   0.131    0.896    
snp2TT       -0.5118     6.9317  -0.074    0.941    
snp3TC        4.7672     5.0211   0.949    0.343    
snp3TT        6.6913     9.7904   0.683    0.495    
snp4CT       -0.4778     3.5501  -0.135    0.893    
snp4TT        2.3431     6.4874   0.361    0.718    
snp5CT        1.1896     3.0462   0.391    0.696    
snp5TT       -2.2787     7.5490  -0.302    0.763    
snp6AG       -3.0266     2.0697  -1.462    0.144    
snp6GG        2.1230     4.6650   0.455    0.649    
snp7AT       -3.0873     3.9148  -0.789    0.431    
snp7TT       -2.6319     4.3146  -0.610    0.542    
snp8CT       -1.5509     3.6318  -0.427    0.669    
snp8TT       -2.5507     7.3228  -0.348    0.728    
snp9CT        6.0693     7.6170   0.797    0.426    
snp9TT        4.7385     7.4517   0.636    0.525    
snp10CT       1.4330     1.6466   0.870    0.384    
snp10TT       1.9810     2.0699   0.957    0.339    
snp11CT       4.8005     6.5175   0.737    0.462    
snp11TT       4.0226     9.2775   0.434    0.665    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 18.2 on 707 degrees of freedom
  (270 observations deleted due to missingness)
Multiple R-squared:  0.02633,   Adjusted R-squared:  -0.003965 
F-statistic: 0.8691 on 22 and 707 DF,  p-value: 0.6372

Let’s check the model if we had used additive coding for all SNPs.

# all allele combinations: C/T, A/T, A/G
BP.df %>% select(snp1:snp11) %>% unlist %>% table
.
  AA   AG   AT   CC   CT   GG   TC   TT 
 636  335  666 2874 2276   73  304 3428 
BP.df %>%
  mutate(across(
    snp1:snp11, 
    function(snp) { 1 * (snp == "TC" | snp == "CT" | snp == "AT" | snp == "AG") + 2 * (snp == "TT" | snp == "GG")}
    )) %>%
  lm(sbp ~ snp1+snp2+snp3+snp4+snp5+snp6+snp7+snp8+snp9+snp10+snp11, data = .) %>% 
  summary

Call:
lm(formula = sbp ~ snp1 + snp2 + snp3 + snp4 + snp5 + snp6 + 
    snp7 + snp8 + snp9 + snp10 + snp11, data = .)

Residuals:
    Min      1Q  Median      3Q     Max 
-53.638 -12.849  -0.522  11.032  61.683 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept) 137.36286    9.09141  15.109   <2e-16 ***
snp1          1.88456    4.03838   0.467    0.641    
snp2         -1.95639    2.96674  -0.659    0.510    
snp3          4.60730    4.65652   0.989    0.323    
snp4          0.05946    3.11138   0.019    0.985    
snp5         -0.26494    2.58719  -0.102    0.918    
snp6         -1.17284    1.80185  -0.651    0.515    
snp7         -0.28939    1.78362  -0.162    0.871    
snp8          0.70702    2.78030   0.254    0.799    
snp9          2.17197    2.54774   0.853    0.394    
snp10         0.60685    1.01229   0.599    0.549    
snp11        -0.39009    4.15347  -0.094    0.925    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 18.17 on 718 degrees of freedom
  (270 observations deleted due to missingness)
Multiple R-squared:  0.01418,   Adjusted R-squared:  -0.0009268 
F-statistic: 0.9386 on 11 and 718 DF,  p-value: 0.5022

sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS  10.16

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] ggplot2_3.3.3     tidyr_1.0.2       dplyr_1.0.8       data.table_1.13.2
[5] workflowr_1.7.0  

loaded via a namespace (and not attached):
 [1] tidyselect_1.1.1 xfun_0.31        bslib_0.3.1      purrr_0.3.3     
 [5] colorspace_2.0-0 vctrs_0.3.8      generics_0.0.2   htmltools_0.5.2 
 [9] yaml_2.2.1       utf8_1.1.4       rlang_1.0.4      later_1.3.0     
[13] pillar_1.7.0     jquerylib_0.1.4  glue_1.6.1       withr_2.5.0     
[17] lifecycle_1.0.1  stringr_1.4.0    munsell_0.5.0    gtable_0.3.0    
[21] evaluate_0.15    labeling_0.4.2   knitr_1.39       callr_3.7.0     
[25] fastmap_1.1.0    httpuv_1.6.5     ps_1.7.0         curl_4.3        
[29] fansi_0.4.1      highr_0.8        Rcpp_1.0.8.3     promises_1.2.0.1
[33] scales_1.1.1     jsonlite_1.7.2   farver_2.0.3     fs_1.5.2        
[37] digest_0.6.25    stringi_1.4.6    processx_3.5.3   getPass_0.2-2   
[41] rprojroot_2.0.3  grid_3.6.1       cli_3.1.1        tools_3.6.1     
[45] magrittr_1.5     sass_0.4.0       tibble_3.1.6     crayon_1.3.4    
[49] whisker_0.4      pkgconfig_2.0.3  ellipsis_0.3.2   rmarkdown_2.14  
[53] httr_1.4.3       rstudioapi_0.13  R6_2.4.1         git2r_0.30.1    
[57] compiler_3.6.1